

Absolute Maximum (Note 2)	ngs(Note 1)	Recommended Operating Conditions (Note 2)
DC Supply Voltage (V_{DD})	-0.5 to $+18 V_{D C}$	DC Supply Voltage (V_{DD}) 3 to $15 \mathrm{~V}_{\mathrm{DC}}$
Input Voltage (V_{IN})	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}_{\mathrm{DC}}$	Input Voltage ($\mathrm{V}_{\text {IN }}$) 0 to $\mathrm{V}_{\mathrm{DD}} \mathrm{V}_{\mathrm{DC}}$
Storage Temperature Range (T_{S})	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Operating Temperature Range (T_{A})
Power Dissipation (P_{D})		CD40192BC, CD40193BC $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Dual-In-Line	700 mW	Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply
Small Outline	500 mW	that the devices should be operated at these limits. The "Recommended
Lead Temperature (T_{L})		Operating Conditions" and Electrical Characteristics tables provide condi- tions for actual device operation.
(Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$	Note 2: $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ unless otherwise specified.

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			${ }^{+85}{ }^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
IDD	Quiescent Device Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \end{aligned}$		$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$			$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$		$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0.05 \\ 0.05 \\ 0.05 \end{gathered}$			$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
$\overline{\mathrm{V} \text { OH }}$	HIGH Level Output Voltage	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{gathered}$		$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{gathered}$			$\begin{aligned} & \hline 4.95 \\ & 9.95 \\ & 14.95 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \hline 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
V_{IH}	HIGH Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 7.0 \\ & 11.0 \end{aligned}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$			$\begin{array}{r} 3.5 \\ 7.0 \\ 11.0 \end{array}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
l_{OL}	LOW Level Output Current (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0.52 \\ & 1.3 \\ & 3.6 \\ & \hline \end{aligned}$		$\begin{gathered} \hline 0.44 \\ 1.1 \\ 3.0 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$		$\begin{array}{r} \hline 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{array}$		$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\overline{\mathrm{IOH}}$	HIGH Level Output Current (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline-0.52 \\ -1.3 \\ -3.6 \end{gathered}$		$\begin{gathered} \hline-0.44 \\ -1.1 \\ -3.0 \end{gathered}$	$\begin{gathered} \hline-0.88 \\ -2.25 \\ -8.8 \end{gathered}$		$\begin{gathered} \hline-0.36 \\ -0.9 \\ -2.4 \end{gathered}$		$\begin{aligned} & \hline \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
I_{IN}	Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline-0.3 \\ 0.3 \end{gathered}$		$\begin{gathered} \hline-10^{-5} \\ 10^{-5} \end{gathered}$	$\begin{aligned} & \hline-0.3 \\ & 0.3 \end{aligned}$		$\begin{gathered} \hline-1.0 \\ 1.0 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

Note 3: AC Parameters are guaranteed by DC correlated testing.
Note 4: I_{OH} and I_{OL} are tested one output at a time.

AC Electrical Characteristics (Note 3) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \Omega$, input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\overline{t_{\text {PHL }}}$ or tPLH	Propagation Delay Time from Count Up or Count Down to Q	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 250 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & 400 \\ & 160 \\ & 130 \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}$ or $\mathrm{t}_{\text {PLH }}$	Propagation Delay Time from Count Up to Carry	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 120 \\ 50 \\ 40 \end{array}$	$\begin{gathered} \hline 200 \\ 80 \\ 65 \end{gathered}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHL }}$ or tPLH	Propagation Delay Time from Count Down to Borrow	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 120 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 80 \\ 65 \end{gathered}$	ns ns ns
$\mathrm{tsu}^{\text {S }}$	Time Prior to Load That Data Must Be Present	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 100 \\ & 30 \\ & 25 \end{aligned}$	$\begin{gathered} 160 \\ 50 \\ 40 \end{gathered}$	ns ns ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time from Clear to Q	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 130 \\ & 60 \\ & 50 \end{aligned}$	$\begin{gathered} \hline 220 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\overline{t_{\text {PLH }}}$ or $\mathrm{t}_{\text {PHL }}$	Propagation Delay Time from Load to Q	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ \hline \end{array}$		$\begin{aligned} & \hline 300 \\ & 120 \\ & 95 \end{aligned}$	$\begin{aligned} & \hline 480 \\ & 190 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {t }}^{\text {LLH }}$ or ${ }_{\text {t }}^{\text {THL }}$	Output Transition Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & 80 \end{aligned}$	ns ns ns
$\overline{f_{C L}}$	Maximum Count Frequency	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 2.5 \\ 6 \\ 7.5 \end{gathered}$	$\begin{gathered} \hline 4 \\ 10 \\ 12.5 \end{gathered}$		$\begin{gathered} \hline \mathrm{MHz} \\ \mathrm{MHz} \\ \mathrm{MHz} \end{gathered}$
$\mathrm{trCL}^{\text {or } t_{\text {f }}}$	Maximum Count Rise or Fall Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 15 \\ & 5 \\ & 1 \end{aligned}$			$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{WH}}, \mathrm{t}_{\mathrm{WL}}$	Minimum Count Pulse Width	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 120 \\ 35 \\ 28 \end{gathered}$	$\begin{gathered} 200 \\ 80 \\ 65 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {twh }}$	Minimum Clear Pulse Width	$\begin{array}{\|l} \hline V_{D D}=5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V} \\ \hline \end{array}$		$\begin{gathered} \hline 300 \\ 120 \\ 95 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 480 \\ & 190 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
${ }^{\text {twL }}$	Minimum Load Pulse Width	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 100 \\ 40 \\ 32 \end{array}$	$\begin{gathered} 160 \\ 65 \\ 55 \end{gathered}$	$\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\overline{\mathrm{C}_{\text {IN }}}$	Average Input Capacitance	Load and Data Inputs (A,B,C,D) Count Up, Count Down and Clear		5 10	$\begin{aligned} & 7.5 \\ & 15 \end{aligned}$	pF pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacity	(Note 5)		100		pF
Note 5: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see Family Characteristics application note, AN-90.						

Timing Diagrams

Sequence:

1. Clear outputs to zero.
2. Load (preset) to BCD seven.
3. Count up to eight, nine, carry, zero, one and two.
4. Count down to one, zero, borrow, nine, eight and seven.

Sequence:

1. Clear outputs to zero.
2. Load (preset) to binary thirteen.
3. Count up to fourteen, fifteen, carry, zero, one and two.
4. Count down to one, zero, borrow, fifteen, fourteen and thirteen.
CD40192BC •CD40193BC
Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

This datasheet has been downloaded from: www.DatasheetCatalog.com

Datasheets for electronic components.

